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Abstract
In the framework of the quantum inverse scattering method, we consider
a problem of constructing local operators for one-dimensional quantum
integrable models, especially for the lattice versions of the nonlinear
Schrödinger and sine-Gordon models. We show that a certain class of local
operators can be constructed from the matrix elements of the monodromy
matrix in a simple way. They are closely related to the quantum projectors
and have nice commutation relations with half of the matrix elements of the
elementary monodromy matrix. The form factors of these operators can be
calculated by using the standard algebraic Bethe ansatz techniques.

PACS number: 02.30.Ik

1. Introduction

In one-dimensional quantum integrable models, the quantum inverse scattering method
(QISM) [1–5] provides a powerful tool for investigating physical quantities. Among them,
the correlation functions have been studied extensively. In order to calculate the correlation
functions, it is necessary to deal with states and local operators. At the early stages of the
development of QISM, the problem of constructing states was solved by means of the Bethe
ansatz.

Recently, great progress was made in constructing local operators in a large class of
spin chain models [6–8] which contain the XXX and XXZ spin chains with spin 1/2. Simple
inverse mappings from the matrix elements of the monodromy matrix to the local spin variables
were found [7, 8]. The inverse mappings help the calculation of form factors and correlation
functions of the spin variables in the framework of QISM [8–10] (see also [11]).

The XXX and XXZ spin chains with spin 1/2 are fundamental models, i.e. the auxiliary
space and the quantum space at a site are isomorphic and the elementary monodromy matrix
has a special point at which it becomes the permutation operator for the auxiliary and quantum
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spaces. The construction of the inverse mapping strongly depends on the existence of the
permutation operators. Some non-fundamental models such as higher spin XXX chains were
solved by means of the fusion procedure [7]. One characteristic property of these models is
that the matrix elements of the elementary monodromy matrix are numerical.

But for some non-fundamental integrable models, such as the lattice nonlinear Schrödinger
(LNS) models [12–20] and the lattice sine-Gordon (LSG) models [2, 15, 21–25], the problem
of constructing the inverse mapping is not solved. The LNS and LSG models are closely related
to the XXX and XXZ spin chains, respectively. Their elementary monodromy matrices are
realized by quantum operators and the quantum space at each site is related to an infinite-
dimensional representation of the Lie algebra sl2 or its quantum deformation Uq(sl2). Only
at very specific values of the coupling constant are the infinite-dimensional representations
truncated into finite-dimensional ones. The approach by the fusion procedure is possible only
at these special points and is very artificial. Moreover, we should take the infinite-dimensional
representation limit which has many difficulties.

Therefore, it is better to consider the inverse mapping in a more direct way. This paper is
an attempt towards the construction of the inverse mapping.

The form factor bootstrap [26] is one of the approaches for obtaining the correlation
functions and was applied to the (continuum limit of) LNS and LSG models. In this approach,
the creation operators of the states are Zamolodchikov–Faddeev (ZF) creation operators. The
ZF creation-annihilation operators are constructed by using the quantum reflection operators
B(λ)A−1(λ) and their conjugate D−1(λ)C(λ). The local operators are treated by means of the
quantum Gel’fand–Levitan equations [27, 28]. The calculation procedure for the form factors
is summarized in the axioms of Smirnov [26]. (See also [29–32] for the approach by the
quantum Gel’fand–Levitan equation in case of the quantum nonlinear Schrödinger model).

In contrast to the Gel’fand–Levitan method, we use the reflection operators to construct
local operators. In a lattice regularization scheme, the elementary monodromy matrices of
LNS and LSG models have special points at which they factorize into quantum projectors
[14, 15]. The constructed operators are closely related to these quantum projectors. In this
paper, a basis of states is chosen to be the Bethe eigenstates. We show that the form factors of
the operators can be calculated by using the algebraic relations in the framework of QISM.

This paper is organized as follows. In section 2, the main idea for constructing the local
operators is explained. In section 3, we show that form factors of these local operators can be
calculated in the framework of the standard algebraic Bethe ansatz method. Some properties of
these local operators are discussed in section 4. The explicit form of the operators is given for
the LNS and LSG models in sections 5 and 6, respectively. Section 7 is devoted to discussion.

2. Local operators from quantum projectors

Let Ln(λ) (n = 1, 2, . . . , N) be an infinitesimal monodromy matrix of lattice models with the
intertwining property:

R(λ,µ)(Ln(λ) ⊗ Ln(µ)) = (Ln(µ) ⊗ Ln(λ))R(λ, µ). (2.1)

Here the numerical R-matrix has the form:

R(λ,µ) =




1 0 0 0
0 b(λ, µ) c(λ, µ) 0
0 c(λ, µ) b(λ, µ) 0
0 0 0 1


 . (2.2)
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The functions b(λ, µ) and c(λ, µ) are rational for the LNS model

b(λ, µ) = −iκ

λ − µ − iκ
c(λ, µ) = λ − µ

λ − µ − iκ
(2.3)

and are trigonometric for the LSG model

b(λ, µ) = i sin γ

sinh(λ − µ + iγ )
c(λ, µ) = sinh(λ − µ)

sinh(λ − µ + iγ )
. (2.4)

The monodromy matrix of the lattice model is given by

T (λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
= LN(λ)LN−1(λ) · · ·L1(λ). (2.5)

There are various lattice regularization schemes and several types of Ln(λ) with
the intertwining property (2.1) have been constructed. Among them, there is a special
regularization scheme in which the following factorization property holds: At the points λ = ν

where the quantum determinant1 vanishes, the elementary monodromy matrix factorizes into
quantum projectors [14, 15]

(Ln(λ))ij |λ=ν = Pi(n)Qj (n) i, j = 1, 2. (2.6)

In this paper, we consider these special models.
Then the monodromy matrix at λ = ν can be written as

(T (ν))ij = Pi(N)WQj(1) (2.7)

where

W = w(N |N − 1)w(N − 1|N − 2) · · · w(2|1)

w(n + 1|n) =
2∑

i=1

Qi(n + 1)Pi(n).
(2.8)

So far, these quantum projectors have been used mainly for constructing the conserved
quantities. A simple observation is that these quantum projectors can be used for constructing
a certain class of local operators of the lattice models. For example, if D(ν) is invertible then
we have two operators which depend on field variables of site 1 or site N only:

D−1(ν)C(ν) = (Q2(1))−1Q1(1) B(ν)D−1(ν) = P1(N)(P2(N))−1. (2.9)

For simplicity, we impose the periodic boundary condition: Ln+N(λ) = Ln(λ). Then the shift
operator U can be defined by

ULn(λ)U−1 = Ln+1(λ) U |�〉 = |�〉. (2.10)

Here |�〉 is the reference state: C(λ)|�〉 = 0. Using this shift operator, we can relate certain
local operators to the matrix elements of the monodromy matrix:

Qn := (Q2(n))−1Q1(n) = Un−1D−1(ν)C(ν)U−n+1

Pn := P1(n)(P2(n))−1 = UnB(ν)D−1(ν)U−n.
(2.11)

Off-shell properties of these operators can be extracted from the form factors:

〈�|
(

M∏
k=1

C(µk)

)
On

(
M ′∏
l=1

B(λl)

)
|�〉 On = Qn or Pn. (2.12)

Here we assume that the sets of spectral parameters {µk} and {λl} satisfy the Bethe equations,
respectively.
1 See equation (4.1) for the definition of the quantum determinant.
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We call a state
∏

k B(λk)|�〉 the Bethe state for generic {λk}. When we emphasize that
{λk} satisfy the Bethe equations, we call the state the Bethe eigenstate.

Let us denote the eigenvalues of the diagonal part of the monodromy matrix on the
reference state by

(Ln(λ))11|�〉 = a1(λ)|�〉 (Ln(λ))22|�〉 = d1(λ)|�〉. (2.13)

It is known that the Bethe eigenstates are also eigenstates for the shift operator with the
following eigenvalues [12, theorem 3]:

U

(
M∏
l=1

B(λl)

)
|�〉 =


 M∏

j=1

r1(λj )


(

M∏
l=1

B(λl)

)
|�〉 (2.14)

where r1(λ) = a1(λ)/d1(λ).
Thus, the form factors of Qn (respectively, Pn) are easily represented by the form factors

of D−1(ν)C(ν) (respectively, B(ν)D−1(ν)). These form factors can be calculated by using
the algebraic commutation relations.

The time evolution of these operators is controlled by the Hamiltonian operators of the
models. The Hamiltonian operator is also diagonalized on the Bethe eigenstates. The form
factors of operators at any time can be easily expressed by those of the operators at a certain
time (e.g., at t = 0). We do not discuss the time evolution in this paper.

Consideration of other points at which A(ν) is invertible is quite similar. Therefore we
omit these cases.

3. Form factors

In this section, we calculate the form factors of D−1(ν)C(ν) in a general setting. The
calculation for B(ν)D−1(ν) is similar. So we omit the case of B(ν)D−1(ν).

We forget the lattice structure (2.5) for a while and treat the matrix elements A(λ), B(λ),
C(λ) and D(λ) as abstract objects. Let

A(λ)|�〉 = a(λ)|�〉 D(λ)|�〉 = d(λ)|�〉. (3.1)

We assume that there is at least one zero for a(λ): a(νA) = 0. Also, we assume that D(νA) is
an invertible operator.

The action of A(λ) on the Bethe states is well known:

A(µ)

M∏
l=1

B(λl)|�〉 = a(M)(µ|{λl})
M∏
l=1

B(λl)|�〉

+
M∑

j=1

b(M)(µ|λj |{λl}l �=j )B(µ)

M∏
l=1
l �=j

B(λl)|�〉 (3.2)

where

a(M)(µ|{λl}) = a(µ)

M∏
l=1

f (λl, µ)

b(M)(µ|λj |{λl}l �=j ) = a(λj )g(µ, λj )

M∏
l=1
l �=j

f (λl, λj ).

(3.3)

Here f (λ, µ) = 1/c(λ, µ) and g(λ, µ) = b(λ, µ)/c(λ, µ).
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For generic µ, λ, we have the following lemma:

D−1(µ)C(µ)B(λ) = f (λ, µ)B(λ)D−1(µ)C(µ) − g(λ, µ)A(λ)

+ g(λ, µ)D−1(µ)D(λ)(A(µ) − B(µ)D−1(µ)C(µ)). (3.4)

The proof is simple:

D−1(µ)C(µ)B(λ) = D−1(µ)[C(µ), B(λ)] + D−1(µ)B(λ)D(µ)D−1(µ)C(µ)

= D−1(µ)g(λ, µ) (D(λ)A(µ) − D(µ)A(λ))

+ D−1(µ) (f (λ, µ)D(µ)B(λ) − g(λ, µ)D(λ)B(µ))D−1(µ)C(µ)

= f (λ, µ)B(λ)D−1(µ)C(µ) − g(λ, µ)A(λ)

+ g(λ, µ)D−1(µ)D(λ)(A(µ) − B(µ)D−1(µ)C(µ)). (3.5)

Then using this lemma and by induction, we can prove that D−1(νA)C(νA) acts on the right
Bethe states as follows:

D−1(νA)C(νA)

M∏
l=1

B(λl)|�〉 =
M∑

j=1

b(M)(νA|λj |{λl}l �=j )

M∏
l=1
l �=j

B(λl)|�〉. (3.6)

This is quite similar to the action of the nonlinear Schrödinger field �(0) on the Bethe states
[33]. Therefore, the calculation procedure for the form factors of �(0) [34, 35] can also be
applied to the following form factors:

FM := 〈�|
(

M∏
k=1

C(µk)

)
D−1(νA)C(νA)

(
M+1∏
l=1

B(λl)

)
|�〉

/
〈�|�〉. (3.7)

Here {µk} and {λl} are solutions of the Bethe equations, respectively.
After some calculations which are a slight modification of [34, 35], we have

FM =
M+1∏
k=1

M+1∏
l=1

h(λk, λl)
∏

1�k<l�M

g(µl, µk)
∏

1�k<l�M+1

g(λk, λl)

×
M∏
l=1

d(µl)

M+1∏
l=1

d(λl)


M+1∑

j=1

(−1)j−1g(νA, λj )detMS(j)


 . (3.8)

Here S(j) (j = 1, 2, . . . , M + 1) is an M × M matrix obtained by removing the jth row from
an (M + 1) × M matrix S whose matrix elements are defined by

Skl = t (λk, µl)

∏M
m=1 h(λk, µm)∏M+1
m=1 h(λk, λm)

− t (µl, λk)

∏M
m=1 h(µm, λk)∏M+1
m=1 h(λm, λk)

(3.9)

(k = 1, 2, . . . ,M + 1, l = 1, 2, . . . ,M). Also, t (λ, µ) = b2(λ, µ)/c(λ, µ) and h(λ, µ) =
1/b(λ, µ).

In the following, we will show that the sum on the right-hand side of equation (3.8) can
be rewritten by using a single determinant.

By using the Cauchy determinant identity or by evaluating the residues, we can prove the
following identity:

M+1∑
j=1

g(η, λj )ξj =
M+1∏
j=1

g(η, λj )

M∏
i=1

1

g(η, µi)
(3.10)
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where

ξk :=
M+1∏
l=1
l �=k

g(λl, λk)

M∏
l=1

1

g(µl, λk)
. (3.11)

With the help of this identity, it is possible to check that the (M + 1)-dimensional
vector ξk is a left null vector of the matrix S:

∑M+1
k=1 ξkSkl = 0. The substitution of

SM+1,l = − ∑M
k=1(ξk/ξM+1)Skl into detMS(j) leads to

(−1)j−1 detMS(j) = (−1)M
ξj

ξM+1
detMS(M+1). (3.12)

In other words, the combination of (−1)j−1 detMS(j)/ξj is a j -independent quantity:

(detMS(1))/ξ1 = −(detMS(2))/ξ2 = · · ·
= (−1)j−1(detMS(j))/ξj = · · · = (−1)M(detMS(M+1))/ξM+1. (3.13)

By virtue of equations (3.12) and (3.10) for η = νA, we have the final result for the form
factors:

〈�|
(

M∏
l=1

C(µl)

)
D−1(νA)C(νA)

(
M+1∏
l=1

B(λl)

)
|�〉

/
〈�|�〉

= (−1)M detM(Skl)1�k,l�M

M∏
l=1

d(µl)

M+1∏
l=1

d(λl)

M+1∏
k=1

M+1∏
l=1

h(λk, λl)

×
∏

1�k<l�M

g(µl, µk)
∏

1�k<l�M

g(λk, λl)

M∏
l=1

g(µl, λM+1)

∏M+1
j=1 g(νA, λj )∏M
i=1 g(νA, µi)

.

(3.14)

Here we have used the relation detMS(M+1) = detM(Skl)1�k,l�M .

4. Some properties of Qn and Pn

In this section, we discuss some properties of the local operators Qn and Pn.
For a spectral parameter µ, let us define µ∨ := µ + iκ for the rational case and

µ∨ := µ− iγ for the trigonometric case. Then

T (µ)σ2T
t (µ∨)σ2 = detq(T (µ))I2. (4.1)

Here t denotes the transpose for the auxiliary space and detq(T (µ)) is a central element called
the quantum determinant.

Lemma (3.4) can be rewritten as follows:

D−1(µ)C(µ)B(λ) = f (λ, µ)B(λ)D−1(µ)C(µ) − g(λ, µ)A(λ)

+ g(λ, µ)D(λ)D−1(µ)D−1(µ∨)detq(T (µ)). (4.2)

At µ = νA, the quantum determinant vanishes in the module constructed over the reference
state. Without loss of generality, we can set detq(T (νA)) = 0.

The following relation comes from the intertwining property:

D−1(µ)C(µ)D(λ) = f (λ, µ)D(λ)D−1(µ)C(µ) − g(λ, µ)C(λ). (4.3)

Now let us recall the lattice structure (2.5) and the definition of the local operator Q1 =
D−1(νA)C(νA). From equations (4.2) and (4.3), we immediately have

Q1B(λ) = f (λ, νA)B(λ)Q1 − g(λ, νA)A(λ) (4.4)
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Q1D(λ) = f (λ, νA)D(λ)Q1 − g(λ, νA)C(λ). (4.5)

It turns out that these relations arise as a consequence of

Q1(L1(λ))i2 = f (λ, νA)(L1(λ))i2Q1 − g(λ, νA)(L1(λ))i1 i = 1, 2. (4.6)

Applying the shift operator to this equation, we have

Qn(Ln(λ))i2 = f (λ, νA)(Ln(λ))i2Qn − g(λ, νA)(Ln(λ))i1. (4.7)

Compared to the action of Q1 = D−1(νA)C(νA) on the right Bethe states (3.6), the action
on the left Bethe states is complicated. For a spectral parameter µ, let µ(m) := µ + imκ for
the LNS model and µ(m) := µ − imγ for the LSG model. (Note that µ(1) = µ∨.) From

〈�|
M∏

k=1

C(µk)D(λ) = d(M)(λ|{µk})〈�|
M∏

k=1

C(µk)

+
M∑

j=1

c(M)(λ|µj |{µk}k �=j )〈�|C(λ)

M∏
k=1
k �=j

C(µk) (4.8)

d(M)(λ|{µk}) = d(λ)

M∏
k=1

f (λ, µk) c(M)(λ|µj |{µk}k �=j ) = d(µj )g(µj , λ)

M∏
k=1
k �=j

f (µj , µk)

(4.9)

we have

〈�|
(

M∏
k=1

C(µk)

)
D−1(λ) = (d(M)(λ|{µk}))−1〈�|

(
M∏

k=1

C(µk)

)

−
M∑

j=1

c(M)(λ|µj |{µk}k �=j )

d(M)(λ|{µk}) 〈�|


 M∏

k=1
k �=j

C(µk)


 D−1(λ(−1))C(λ(−1)). (4.10)

Here we have used C(λ)D−1(λ) = D−1(λ(−1))C(λ(−1)). If we use these relations recursively,
we can see that the result of the action of D−1(νA)C(νA) on the left Bethe state yields terms
which contain operators C

(
ν

(−m)
A

)
for m = 0, 1, . . . ,M .

The origin of this complicated action is the following commutation relation:

C(µ)D−1(λ) = c(λ, µ)D−1(λ)C(µ) + b(λ, µ)D−1(λ)D(µ)D−1(λ(−1))C(λ(−1)) (4.11)

which can be derived from the intertwining properties.
To conclude, the local operator Qn has nice commutation relations with half of the matrix

elements of the infinitesimal monodromy matrix.
Similarly, from

C(λ)B(µ)D−1(µ) = f (λ, µ)B(µ)D−1(µ)C(λ) − g(λ, µ)A(λ)

+ g(λ, µ) detq(T (µ))D−1(µ∨)D−1(µ)D(λ) (4.12)

D(λ)B(µ)D−1(µ) = f (λ, µ)B(µ)D−1(µ)D(λ) − g(λ, µ)B(λ) (4.13)

we can derive the following property of the local operator Pn = UnB(νA)D−1(νA)U−n:

(Ln(λ))2jPn = f (λ, νA)Pn(Ln(λ))2j − g(λ, νA)(Ln(λ))1j j = 1, 2. (4.14)

The operator PN acts nicely on the left Bethe states and has a complicated action on the right
Bethe states.
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5. Lattice nonlinear Schrödinger model

The Hamiltonian of the quantum nonlinear Schrödinger model is given by

H(NLS) =
∫

dx

(
∂ψ∗

∂x

∂ψ

∂x
+ κψ∗ψ∗ψψ

)
. (5.1)

Various types of LNS models have been proposed [12–20].
For simplicity, we use the LNS model of [14, 15] as an example. Let us put the

system in a box of length 2L: (−L < x � L), and discretize it to the lattice with
N-sites: xn = −L + n� (n = 1, 2, . . . , N). Here the lattice spacing is given by � = 2L/N .
The elementary operators for this lattice model are constructed from original fields as follows:

ψn =
∫ xn

xn−�

ψ(x, 0) dx ψ∗
n =

∫ xn

xn−�

ψ∗(x, 0) dx. (5.2)

They satisfy the canonical commutation relations: [ψm,ψ∗
n ] = �δm,n.

The infinitesimal monodromy matrix is given by [14, 15]

Ln(λ) =
(

1 − i(λ/2)� + (κ/2)ψ∗
nψn

√
κψ∗

n (1 + (κ/4)ψ∗
nψn)

1/2

√
κ(1 + (κ/4)ψ∗

nψn)
1/2ψn 1 + i(λ/2)� + (κ/2)ψ∗

nψn

)
. (5.3)

For example, at λ = νA := −2i/�, the infinitesimal monodromy matrix factorizes into the
quantum projectors [14, 15]: (Ln(νA))ij = Pi(n)Qj (n) where

P1(n) =
√

κ/2ψ∗
n P2(n) =

√
2(1 + (κ/4)ψ∗

nψn)
1/2 (5.4)

Q1(n) =
√

κ/2ψn Q2(n) =
√

2(1 + (κ/4)ψ∗
nψn)

1/2. (5.5)

Thus, for generic coupling constant κ ,

w(n + 1|n) = 2(1 + (κ/4)ψ∗
n+1ψn+1)

1/2(1 + (κ/4)ψ∗
nψn)

1/2 + (κ/2)ψn+1ψ
∗
n (5.6)

is an invertible operator. There exists D−1(νA).
The corresponding local operators are

Qn =
√

κ

2
(1 + (κ/4)ψ∗

nψn)
−1/2ψn Pn =

√
κ

2
ψ∗

n (1 + (κ/4)ψ∗
nψn)

−1/2. (5.7)

In the continuum limit � → 0, they become the field operators of the quantum nonlinear
Schrödinger model:

Qn →
√

κ

2
�ψ(x, 0) Pn →

√
κ

2
�ψ∗(x, 0) x = −L + n� (5.8)

and the form factors (3.14) give consistent results with [35].

6. Application to the lattice sine-Gordon model

The Hamiltonian of the quantum sine-Gordon model is given by

H(SG) =
∫

dx

(
1

2
π2 +

1

2

(
∂u

∂x

)2

+
m2

β2
(1 − cos βu)

)
. (6.1)

There are several approaches to the lattice regularization of the sine-Gordon model [15, 21–25].
For simplicity, we use the regularization scheme proposed in [15, 21, 22].

The infinitesimal monodromy matrix is given by [15, 21, 22]

Ln(λ) =
(

π
−1/2
n ϕ(un)π

−1/2
n −i(m�/2) sin((β/2)un + iλ)

−i(m�/2) sin((β/2)un − iλ) π
1/2
n ϕ(un)π

1/2
n

)
(6.2)
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πn = exp
( i

4
βpn

)
ϕ(un) = (1 + 2r cos βun)

1/2 r =
(

m�

4

)2

. (6.3)

Here γ = β2/8 and the lattice operators un and pn (n = 1, 2, . . . , N) satisfy the canonical
commutation relations: [un, pm] = iδnm. In the continuum limit � → 0, un → u(x), pn →
π(x)� (−L < x = −L + n� � L).

In order to construct the reference state |�〉, the elementary monodromy matrix should
be taken as a composite of the infinitesimal monodromy matrices of two adjacent sites [2]:

Lk(λ) = L2k(λ)L2k−1(λ) k = 1, 2, . . . , N/2. (6.4)

Here we assume the number of sites N is even. Then

(Lk(λ))11|�〉 = a1(λ)|�〉 (Lk(λ))22|�〉 = d1(λ)|�〉 (6.5)

a1(λ) = 1 + 2r cosh(2λ − iγ ) d1(λ) = 1 + 2r cosh(2λ + iγ ). (6.6)

Thus, the shift operator is defined by

ULkU
−1 = Lk+1 U |�〉 = |�〉. (6.7)

In other words, it acts as a two-site shift for the local variables: UunU
−1 = un+2, UpnU

−1 =
pn+2. In general, the periodic boundary condition has the form: un+N = un + (2π/β)Q,
pn+N = pn where Q is the topological charge. In this paper, we only consider the sector with
Q = 0 for simplicity.

Let us introduce a positive ‘momentum cutoff’ parameter � by 2r cosh � = 1.
At λ = ν

(ε,ε′)
A := 1

2 (iγ + ε� + iε′π) (ε, ε′ = ±1), a1(λ) vanishes and the infinitesimal
monodromy matrix factorizes into the quantum projectors [14, 15]:(

Ln

(
ν

(ε,ε′)
A

))
ij

= P
(ε,ε′)
i (n)Q

(ε,ε′)
j (n) (6.8)

P
(ε,ε′)
1 (n) = (4r)1/4π−1/2

n

[
cos 1

2 (βun + iε�)
]1/2

P
(ε,ε′)
2 (n) = −iε′(4r)1/4π1/2

n

[
cos 1

2 (βun − iε�)
]1/2

Q
(ε,ε′)
1 (n) = (4r)1/4

[
cos 1

2 (βun − iε�)
]1/2

π−1/2
n

Q
(ε,ε′)
2 (n) = iε′(4r)1/4

[
cos 1

2 (βun + iε�)
]1/2

π1/2
n .

These quantum projectors are invertible operators. From (Lk(λ))21|�〉 = 0, we can see that
the operator

w(ε,ε′)(2k|2k − 1) =
2∑

i=1

Q
(ε,ε′)
i (2k)P

(ε,ε′)
i (2k − 1) (6.9)

has a zero eigenvalue. So, w(ε,ε′)(2k|2k − 1) is not invertible and consequently, D
(
ν

(ε,ε′)
A

)
is

also not invertible. The assumption in section 3 that D(νA) has an inverse does not hold. We
should modify the argument of section 3.

Although D−1
(
ν

(ε,ε′)
A

)
does not exist, we can define the following unitary operators:

P (ε)
n := ε′P (ε,ε′)

1 (n)
(
P

(ε,ε′)
2 (n)

)−1
Q(ε)

n := ε′(Q(ε,ε′)
2 (n)

)−1
Q

(ε,ε′)
1 (n). (6.10)

The left-hand sides of the above equations do not depend on a choice of ε′ = ±1. Without
loss of generality, we set ε′ = 1. Let ν

(ε)
A := ν

(ε,+1)
A .
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Let us introduce the following unitary operators:

O(ε)
n := π−1/2

n

[
cos(1/2)(βun − iε�)

cos(1/2)(βun + iε�)

]1/2

π−1/2
n ε = ±1. (6.11)

Then P (ε)
n = iO(−ε)

n and Q(ε)
n = −iO(ε)

n .
The unitary operators (6.11) have a complicated form. But in the continuum limit, they

are simplified into exponential operators2:

lim
�→0

O(ε)
n = e(1/2) iε(βu(x)−γ ) ε = ±1. (6.12)

Thus, O(ε)
n is interpreted as a lattice regularization of the exponential operator e(1/2) iεβu(x).

By using the explicit expressions, we can check that these lattice ‘exponential operators’
satisfy equations (4.7) and (4.14).

Therefore, in place of D−1(νA)C(νA), we can use the well-defined operator Q
(ε)
1 . Because

the unitary operator Q
(ε)
1 does not annihilate the reference state, the action of Q

(ε)
1 on the Bethe

state has an ‘anomalous’ term:

Q
(ε)
1

M+1∏
l=1

B(λl)|�〉 =
M+1∑
j=1

b(M+1)
(
ν

(ε)
A |λj |{λl}l �=j

) M+1∏
l=1
l �=j

B(λl)|�〉

+

(
M+1∏
k=1

f
(
λk, ν

(ε)
A

))(
M+1∏
l=1

B(λl)

)
Q

(ε)
1 |�〉. (6.13)

But because

〈�|
(

M∏
k=1

C(µk)

) (
M+1∏
l=1

B(λl)

)
= 0 (6.14)

the anomalous term gives no contribution to the form factors

〈�|
(

M∏
k=1

C(µk)

)
Q

(ε)
1

(
M+1∏
l=1

B(λl)

)
|�〉. (6.15)

Formula (3.14) gives the correct result even for Q
(ε)
1 .

It may seem that the anomalous term would contribute to the form factors for the same
numbers of C(µ) and B(λ). If we recall

〈�|
(

M∏
k=1

C(µk)

) (
M∏
l=1

B(λl)

)
= N (M)({λl})δ{µk},{λl}〈�| (6.16)

where N (M)({λl}) is the norm of the Bethe eigenstate:

N (M)({λl}) = 〈�|
(

M∏
k=1

C(λk)

) (
M∏
l=1

B(λl)

)
|�〉

/
〈�|�〉 (6.17)

(for the explicit form, see [36, 37]), then

〈�|
(

M∏
k=1

C(µk)

)
Q

(ε)
1

(
M∏
l=1

B(λl)

)
|�〉

= δ{µk},{λl}N (M)({λl})
(

M∏
l=1

f
(
λl, ν

(ε)
A

)) 〈�|Q(ε)
1 |�〉 = 0. (6.18)

〈�|Q(ε)
1 |�〉 vanishes due to the factor exp(−i(β/4)p1) in Q

(ε)
1 .

2 There is a subtlety due to the operator ordering. One must choose a prescription for the limit. Here we take the
continuum limit after ‘normal-ordering’ the operator (6.11) (i.e. moving pn to the right of all un).
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We conclude that although D−1
(
ν

(ε)
A

)
does not exist, the result of section 3 is still correct

for the LSG model. Thus, as a mnemonic, we can write:

Q
(ε)
1 = D−1(ν(ε)

A

)
C

(
ν

(ε)
A

)
. (6.19)

By means of this mnemonic, we can make it clear that the operators (6.11) have different
character depending on whether n is even or not:

O(ε)
2k = −iUkB

(
ν

(−ε)
A

)
D−1

(
ν

(−ε)
A

)
U−k O(ε)

2k+1 = iUkD−1
(
ν

(ε)
A

)
C

(
ν

(ε)
A

)
U−k. (6.20)

The operators at even sites (respectively, odd sites) are creation-type (respectively, annihilation-
type) operators.

7. Discussion

In this paper, we showed that a certain class of local operators can be constructed by using the
quantum projectors. For the LNS model, these local operators (5.7) are lattice analogues of
the continuum nonlinear Schrödinger fields ψ(x) and ψ∗(x). For the LSG model, these local
operators (6.11) are lattice analogues of the exponential operators e(1/2) iεβu(x).

These local operators have a complicated form. But this lattice regularization simplifies
the calculation of the form factors. The form factors of these lattice operators can be calculated
only by using well-established techniques of the algebraic Bethe ansatz.

In addition, because the inputs are the elementary monodromy matrix Ln(λ) (5.3) or (6.2)
which are already complicated, it seems unavoidable to have complicated output if one tries
to keep simplicity of the inverse mapping.

For the LSG model, we considered the local operators O(ε)
n in the sector of the zero

topological charge Q. Consideration of the sector Q �= 0 is necessary. Moreover, in order to
make connection with the quantum sine-Gordon model, we should consider the thermodynamic
limit. Note that the following continuum limits have no ambiguity of the operator ordering:

lim
�→0

eiεγO(ε)
n

(
O(−ε)

n

)−1 = lim
�→0

e−iεγ
(
O(−ε)

n

)−1O(ε)
n = eiεβu(x). (7.1)

Therefore, in principle, the form factors of the exponential operators e±iβu(x) can be evaluated
using those of O(ε)

n . Also, the results may be used to consider the form factors in the finite
volume.
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